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G D R  

Received 29 January 1985 

Abstract. General SU(2) Yang- Mills configurations and solutions of the source-free Yang- 
Mills equations are investigated, which are invariant under some high subgroup of the 
Poincart group. Simply transitive G,, all multiply transitive G,, multiply transitive G4, 
which can be obtained by adding a fourth commuting Killing vector to a multiply transitive 
G,, and also all groups G,, r 2 6 are considered. The results presented mainly concern the 
question of existence. Selected special invariant configurations are given explicitly. 

1. Introduction 

Solutions admitting a spacetime symmetry group play an important role in many 
physical theories. Detailed surveys on such solutions have been worked out for classical 
electrodynamics (Combe and Sorba 1975, Beckers et al 1978, 1979), Einstein’s theory 
of gravity (Petrov 1969) and Dirac theory (Beckers et a1 1981). Except for some special 
obvious symmetries, such as spherical symmetry, axial symmetry, translational invari- 
ance and a few others, a general survey on SU(2) Yang-Mills fields with spacetime 
symmetries has been missing up to now. This paper is intended as a step towards such 
a survey, dealing with Yang-Mills fields invariant under high subgroups of the PoincarC 
group. 

The general problems connected with spacetime symmetries of gauge potentials 
ha? been solved during recent years, firstly for electrodynamics by Janner and Janssen 
(1971) and Giovannini (1977) and later for non-Abelian gauge fields by Bergmann 
and Flaherty (1978), Jackiw (1978) and Forgacs and Manton (1980). Forgacs and 
Manton, besides being the first to provide a general formulation of gauge potentials 
invariant under some spacetime symmetry, give an explicit rule for calculating these 
invariant potentials in the case of spherical symmetry. While their general formulation 
is applicable to any spacetime group, the calculational scheme-essentially resting on 
a change from the orbits of the group to the whole group-seems to be more restricted. 
Some premises such as semisimplicity of the spacetime group or independence of the 
components of the Killing vectors from the coordinates perpendicular to the orbits 
are not met for a general spacetime symmetry group. Therefore we decided to solve 
the equations on the orbits themselves by a method of successively fixing the gauge. 
This circumvents the restrictions mentioned and can be applied to any subgroup of 
the PoincarC group, yielding the most general invariant configuration. 

The paper is organised as follows: after providing in § 2 some necessary background 
on spacetime symmetric gauge potentials we are ready to give in P 3 an outline of our 
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method for calculating them. To illustrate this method an example is presented in 0 4. 
Sections 5-8 give the results of applying this method to high subgroups of the PoincarC 
group, including some interesting whole classes of subgroups. In this paper we mainly 
concentrate on the question of the existence and general properties of the invariant 
potentials obtained, while some special results are given elsewhere (Basler and Hadicke 
1984a, b).  

We should point out that our investigations resting on the formulation of Forgacs 
and Manton (1980) are purely local. There is an alternative global approach to spacetime 
symmetric gauge fields, developed essentially by Harnad and Vinet (1978) and Harnad 
et a1 (1979, 1980). Although this global formulation is of considerable mathematical 
beauty the local description with the Lie derivative seems to be better adapted for the 
explicit calculation of invariant potentials. After all, Harnard and Vinet (1978), Harnad 
et a1 (1979) and Beckers and Hussin (1984) have cleared up the relations between 
both approaches. 

2. Spacetime symmetric gauge fields 

According to Forgacs and Manton (1980) a gauge field admits a spacetime symmetry, 
if the spacetime transformation of the potential can be compensated by a gauge 
transformation. In the SU(2) Yang-Mills theory this leads to the symmetry equations 

L!?CnAp = D, W,. (2.1) 

We adopt matrix notation 

A,, = A;T* T A  = $U* 

where U* are the Pauli matrices. The field strengths are 

F,,” = a,AV -&A, &I. (2.2) 

means the Lie derivative along one of the Killing vectors 6, ( n  = 1 , .  . . , r )  of the 
spacetime symmetry group G ,  under consideration. The so-called symmetry potentials 
W, characterise the compensating gauge transformation. The 6, fulfil the commutation 
relations 

[ t m ,  g n I  = c k , n ~ k .  (2.3) 

If we have only one Killing vector the symmetry equation (2.1) can be easily solved 
by choosing a gauge where W = 0. Possible higher symmetries are provided by  the 
subgroups of the PoincarC group, because the Yang-Mills equations are PoincarC 
invariant (indeed they are conformal invariant even). Complete lists of all subgroups 
of the PoincarC group have been developed by LaBner (1973), Bacry et a1 (1974) and 
Patera er a1 (1975), where the latter paper has been taken as the reference here. 

By further Lie differentiating (2.1) along a second Killing vector 6, and taking the 
antisymmetric part one arrives at a consistency equation for the symmetry potentials: 

L!?C,W,-2CnW,-ig[W,,,, W,l-ck,,W~-K,,=O 

D,K,, = 0. 

Up to now, in most investigations the covariant constants K,, have been omitted. A 
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systematic treatment for the U( 1) case is given by Beckers and Hussin (1984). For the 
SU(2) case by diagonalising one of the K,, and further utilising ( 2 . 5 )  one finds that 
there are two possible cases: 

( i )  if one of the K,, is different from zero, only embedded Abelian fields exist; 
(ii) proper non-Abelian fields only exist if all K,, vanish. 
Thus, whereas the case K,, = 0 leads to the most general non-Abelian field, the 

most general Abelian (embedded U( 1)) field can be found by taking all K,, as constants 
different from zero. In this connection we should remark that for higher groups SU( N ) ,  
N > 2 even K,, # 0 may lead to non-Abelian fields. 

3. The calculation of gauge invariant potentials 

To calculate the invariant potentials for a given subgroup of the Poincari group we 
have to find the general solution of (2.4) and put the W, obtained into equations (2.1). 
These can be solved afterwards to give the most general invariant potentials for this 
group. 

Our calculational method consists of three steps. We start with a suitable choice 
of coordinates which are fitted to the symmetry under consideration. These coordinates 

(3.1) xp' = ( e ,  a, b, c)  

are subdivided into two classes 

X a  tangential to the orbits 

X' normal to the orbits 

of the spacetime symmetry group. Because these orbits are the integral surfaces of the 
Killing vectors, a choice is possible where the Killing vectors have only derivatives 
along the orbits of the group 

In particular one Killing vector can be given the form 

51 = a, (3.3) 

by choosing its integral curves as coordinate lines a. The possible forms of the further 
Killing vectors depend on the structure of the spacetime group. Using the normal 
form classification of Killing vectors given by Petrov (1969) and the table of PoincarC 
subgroups from Patera et a1 (1976) it can be shown that the following normal forms 
are possible for PoincarC subgroups G,, r 3 3, to which our investigations are confined: 

simply transitive G3 

5, = 8, 

g2 = AAb, c, e )  a, + a b  
g3 = A 3 ( a . .  . e )  a, + B 3 ( a . .  . e )  ab+  C3(c) a, 
c3 # 0 

(3.4) 
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multiply transitive G3 

el = a ,  
5 2 = A 2 ( ~ .  . . e ) a , +  B ~ ( u . .  . e )  a b  

5 3 = A 3 ( ~ .  . . e )  a,+ B ~ ( u . .  . e )  a b  

B 2 # 0  B 3 # 0  A:+A:#o 

simply transitive G, 

(3.5) 

(3.6) 

51 = a, 
5 2 = A 2 ( b ,  c, e )  a R + a b  

g3 = A3( a .  . . e )  a, + B3(a  . . . e )  a b  + C3( c )  a, 

5, = A,(a . .  . e )  a, + B,(a . . . e )  ab + C , ( a . .  . e )  a, + E,( e )  a, 

E4#0  

multiply transitive G, 

51 = a ,  

g3 = A3( a .  . . e )  a, + B3( a .  . . e )  a b  + C3( a .  . . e )  a, 

c:+ c: # 0. 

5 2 = A 2 ( b ,  c , e ) a u + a b  

(3 .7)  

5 ,=A4(a . . .  e ) a , + B , ( a  . . .  e ) a b + C , ( a  . . .  e ) a ,  

For higher subgroups, which act on the whole Minkowski space (up to two groups G5 
not considered here) we start from a G, and add the fifth Killing vector. Because 
every PoincarC subgroup GS has a subgroup G4 and every G6 has a subgroup GS or 
G4 this does not present any difficulties. 

After having transformed the Killing vectors we are ready to solve in a second step 
the consistency equations, which are now formulated on the orbits 

5; a, w, - 6:: daw, -ig[ w,, w,] - CL, W, = o 

6 ;  a, w, -.tp; a, W, - ckn W, - K,, = o 

(3.8) 

(3.9) 

for K,, = 0 

W, = W', T3  

for K,, # 0. Thereby we exploit the gauge freedom of the symmetry potentials 

W: = ww,w- ' - ( i /g ) ( t~  a , w ) w - ' .  (3.10) 

From (3.3) we immediately see that Wl can be gauged away by a transformation w 1  

W;UI = 0 (3.11) 

because 

U 1  WI = (i /g) a&, 
can be solved by 

(3.12) 
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in any case. With (3.11) the first ( r - 1 )  consistency equations (3.8) (equations (3 .9)  
for K,, # 0 can be dealt with in a similar way) are 

(3.13) 

This is a linear homogeneous system of ordinary differential equations with constant 
coefficients, which can be easily solved to determine the a dependence of the symmetry 
potentials W,, n = 1 . . . r. Now we consider the gauge transformations of W2 

~ ; z = w ~ ~ ~ w ; I - ( i / g ) ( e ;  a,w,)w;*. (3.14) 

a, w, - c:, w, = 0. 

To preserve (3.11) we are restricted to a residual gauge freedom 

w2 = w2(b ,  c, e ) .  (3.15) 

The further treatment obviously depends on the structure obtained for W2(a, b, c, e )  
and on 6; = B 2 ( a .  . . e). In what follows we make use of the fact that all but two of 
the subgroups G, r 2 3 of the Poincart group have an Abelian subgroup G2 for their 
part. If this G2 is constituted by 5, and f 2 ,  from (3.13) we conclude 

(3.16) W2 = W,(b, c, e ) .  

On the other hand, if f ,  and t2 commute, f 2  can be given the form 

f 2 = A 2 ( b , c , e ) a a + B 2 ( b , c , e ) a b  (3.17) 

(cf (3.41, respectively (3.5) ; the only two exceptions evidently are two multiply transitive 
G3). Under these conditions the equation 

w2(b, c, e )  Wdb, c, e )  = (i/g)&(b, c, e )  abw2(b, c, e )  
can be solved by 

to give 

w;z = 0. 

(3.18) 

(3.19) 

(Note that B2 # 0 in all cases). By this choice of gauge we have simplified the equations 
for W, considerably: 

a, w, - c:, w3 = o 
a b  w, - 4, w, = 0. 

From (3.20) we find the general form for W, 

W, = a,( c, e )  exp( C : ~ U  + &b). 

(3.20) 

(3.21) 

Thus, for a G3 the consistency equations (3.8) are solved. Without going into details, 
we mention that the two multiply transitive G3 without an Abelian subgroup G2 can 
be dealt with in a similar way. The W, for higher subgroups can be constructed starting 
from one of the G3 and adding the further Killing vectors. From the additional 
consistency equations the W,, n > 3 can be calculated easily, because the structure of 
W,, W2 and W,, which enter these equations, is already known. Additional simplifica- 
tion can be obtained by exploiting the still remaining gauge freedom, as was done for 
W2 and W3. 
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This scheme of successive gauging and solving can be also applied to the case 
K,, # 0, where all W, and K,, in (3.9) commute. The difference is that, because of 
the K,, # 0 in (3.9), even for c:, = 0 we cannot conclude a, W2 = 0 from W,  = 0. Thus, 
the residual gauge freedom cannot be used to gauge away W2 completely (thereby 
preserving W, = 0), but only to make a free function of b, c and e to zero. Consequently, 
the determination of the W, for K,, # 0 needs a bit more calculation, but in principle 
it can be done the same way. 

After determining the symmetry potentials W, we are ready to change over to the 
symmetry equations (2.1) in a third step. With coordinates (3.1), the equations (2.1) 
are also formulated on the orbits 

(3.22) 2gnA,s  = [ E  a,A,,+ (a,&)A, = D,, W,. 

W ]  = o  
Because of 

and 

6, = a, 
we conclude that in every case the gauge potentials A,. are independent of at least 
one coordinate 

(3.23) A,. = A,,( b, c, e ) .  

The remaining equations are of two types, 
(i) differential equations 
(ii) algebraic equations 

for certain components A, .  In solving them we restrict ourselves to solutions with 
C" functions. Also for (3.22) the cases K,, = 0 and K,, # 0 must be treated separately 
with A,. = A i t T 3  in the last case. In this way we get all possible invariant configurations 
for a given spacetime symmetry group. An interesting application of the configurations 
obtained consists in putting them into the source-free Yang-Mills equations to find 
out under which additional restrictions these can be fulfilled. In several cases it turns 
out that in spite of the existence of general configurations solutions of the source-free 
equations are excluded. On the other hand, some embedded Abelian solutions 
(embedded Maxwell fields) have k additional Killing vectors, which enlarge the 
symmetry group of the solution from the presumed G, to a Gr+k. 

4. An example 

We consider the following group 

{PI, Po-P,, L*+K,I  (4.1 ) 
as an example for our calculational scheme, restricting ourselves to K,, = 0 again. In 
characterising the subgroups of the Poincari group the following notation is used: 

L, 

Ki 

P, 

rotation around the i axis 

Lcirentz boost into the i direction 

translation into the p direction 

(in particular Po is a timelike translation). Thus, the group (4.1) consists of a spacelike 
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translation, a null-like translation and a so-called null rotation, consisting of a combina- 
tion of a rotation and a boost. The orbits of this group are two-dimensional null 
surfaces, thus the group acts multiply transitive. To obtain the corresponding form 
(3.5) we can change from the Cartesian coordinate where 

5, = P,  = a, 
5 2  = Po - P3 = - (8,  + 8, ) 

g3 = L , +  K1= ( t  - z )  a, + x ( d ,  + a,) 
to 

x u :  a = x  b = -i( 2 z + t )  

x': c =  y e = 2-'"(z - t ) .  

In these coordinates the Killing vectors only have derivatives along a and b 

P ,  = a a  

Lz+ K ,  = -&'e a, - a ab. 
Po- P3 = a b  

Now we insert (4.3) into the consistency equations (3.8). We notice that the only 
non-vanishing structure constant is c:, = - 1 .  After gauging 

w, = o  
for n = 2  equation (3.13) gives 

W, = W2( b, c, e). 

Because of 

5 2 = a b  

which means that A2 = 0 and B2 = 1 in (3.17) the conditions are fulfilled to gauge further 

w, = 0. 

Next, because of c:3 = ci3 = 0 (3.21) reduces to 

W3 = Q3(c,  e). 

Because of 

53w3(c, e)  = 0 

w? = w3(c,  e)  w3(c, e)w3(c, e)-' - (i/g)(53w3)0;1 

the residual gauge freedom for W3 

cannot be used to gauge W3 = 0 too. Thus, we remain with 

w,= w2=0 W3 = Q3(c,  e). 
With this, the symmetry equations (3.22) read 

aaA,f = 0 

a&,'= 0 

-d!(a,.e)A, - (aG,a)Ab = a,4, -ig[A,,, 0 3 1 .  

(4.4) 
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From (4.5) and (4.6) we have 

A,. = A,,( c, e ) .  

Now we have to distinguish the cases Q3=0 and Q 3 #  0. For Q3 =0,  we see that 

A, = Ab = 0. 

Exploiting the residual gauge freedom w = w ( c ,  e ) ,  we still can choose a gauge where 

A,=O 

and the gauge potentials are 

A, = A, = Ab = O (4.8) 

Fe, = aeg(c, e ) .  (4.9) 

A, = g(c, e ) .  
There is only one non-vanishing component of the field strength tensor 

It should be noted that this configuration is still a non-Abelian one, because the 
commutator 

[A, Fa1 = [g, aegl 

which enters the field equations, is not obliged to vanish in general. 

diagonalise 
On the other hand, for Q 3 # 0  we use the residual gauge freedom w ( c ,  e)  to 

(4.10) W3 = a:( c, e )  T 3 .  

Then, from an analysis of (4.5)-(4.7) we learn 

A, = g,(c, e )  T3  A,=Ab=O A, = g2( c, e) T3.  (4.11) 

This is an embedded Abelian configuration. However the most general embedded 
Abelian configuration will be obtained for Kmn # 0, thus (4.1 1) will only be a special 
case of the potentials obtained then. 

The formalism described above was applied to high subgroups G, r 2 3  of the 
PoincarC group, including particularly: 

(i) groups with an obvious interpretation and/or physical applicability; 
(ii) some interesting whole classes of subgroups. 

In what follows we will quote some of the general results, concentrating mainly on 
the question of existence. 

5. Simply transitive groups G3 

The class of simply transitive subgroups G3 of the PoincarC group is rather extensive, 
thus we selected only a few of them. Table 1 shows the general results. 
The notation for the groups is as in 0 3. The orbits are denoted as follows: 

N }  [ null-like ] 
S, denotes a space-like s-dimensional hypersurface 
Ts time-like 

‘Conf.’ stands for general SU(2) configuration, whereas ‘Solution’ refers to solutions 
of the source-free Yang-Mills equations. The symbol 3 means that at least one 
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Table 1. Selected Yang-Mills configurations and solutions of the source-free Yang-Mills 
equations invariant under a simply transitive G3.  

Group 

Abelian non- Abelian 

Orbits Conf. Solutions Conf. Solutions 

configuration or solution with this symmetry exists; - means that the existence of 
such a configuration/solution could be excluded. 

For the first three groups the Abelian configurations are well known; they are 
embeddings of the corresponding electromagnetic fields. For instance for P I ,  P2, Po - P3 
we find (in the case of K,, # 0) 

where 

a = x  b = y  c = - f ( z + t )  e = f ( z - t ) .  

Inserting this configuration into the Yang-Mills equations the non-Abelian terms clearly 
vanish and we obtain the additional restriction for source-free solutions 

g,=  K , e +  K2 .  

The corresponding field strengths can be calculated and are a superposition of a 
plane-wave part and an additional constant contribution. 

The more interesting results concern the non-Abelian configurations. For the same 
group these are 

A, = O  A, = g l ( e )  Ab = g2(e)  A, = g 3 ( e )  (5.2) 
where now the g ,  are general SU(2) matrices 

g ,  = g t  TA.  

The general structure (5.2) is common to the first three groups in table 1. We obtain 
potentials, which depend on either one null-like or one spacelike or one timelike 
coordinate only. The corresponding solutions of the source-free Yang-Mills equations 
for such potentials have already been investigated by Raczka (1982). The most 
remarkable result is the non-existence of non-Abelian source-free solutions if this 
coordinate is a null-like one. On the contrary, explicit solutions were constructed by 
Raczka for the case of a spacelike or timelike coordinate. 

The group {PI, Pz, Po- P3} and also the last two in table 1 are subgroups of the 
symmetry group of the plane waves in electrodynamics 

A,=A,=O A , = g l ( e )  A b = g 2 ( e )  

a = x  b = y  c = - $ ( z + t )  e = i ( z - t )  
(5.3) 
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which is the group {P1, P2, Po- P3, L,+ K1, L1 - K 2 } .  Already from this it follows that 
non-Abelian solutions of the source-free Yang-Mills equations with the same symmetry 
do not exist. Moreover, also non-Abelian ‘non-plane wave’ solutions (in the sense of 
being invariant against L2+ KI,  L1 - K 2 ,  Po - P3 only) are excluded herewith. 

Another application of classical Yang-Mills fields concerns an analogy with the 
stochastic movement in classical mechanics (‘Yang-Mills mechanics’, see Baseyan et 
a1 1979, Matinyan et a1 1981). The non-Abelian configurations used there are found 
to be invariant under {Pl, Pz, P3}.  

6. All multiply transitive groups G3 

Because this class of subgroups covers a lot of interesting cases, it was investigated 
completely. 

Table 2. Yang-Mills configurations and solutions of the source-free Yang-Mills equations 
invariant under a multiply transitive G3. 

Abelian non- Abelian 

Group Orbits Conf. Solutions Conf. Solutions 

Firstly, we record that all embedded Abelian solutions possess further Killing vectors, 
stated in other words, Abelian solutions with a maximal multiply transitive G3 do not 
exist. In particular-as is well known for electrodynamics-all spherically symmetric 
embedded Abelian solutions of the source-free field equations have to be static. 
Remarkably, this is not true for non-Abelian solutions. There exist explicit examples 
of time-dependent spherically symmetric non-Abelian solutions of the source-free 
Yang-Mills equations (de Alfaro et a1 1976, Actor 1972). 

For the non-Abelian configurations we find in general two different, non-gauge- 
equivalent types of fields. This fact is already well known for spherical symmetry 
(Malec 1982, Jackiw 1980, Miyachi et a1 1982), but obviously is a more general 
phenomenon. Hence, type-I configurations are characterised by the fact that all 
symmetry potentials can be gauged to zero simultaneously, which is impossible for 
type-I1 configurations. As can be read off in table 2, such type-I1 configurations exist 
only for those groups, which act on a spacelike 2-surface S2.  We further discover, 
that source-free solutions are obtainable from type-I1 configurations only. 
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We add some remarks concerning special subgroups. {PI, P2, L3} is the symmetry 
group of a plane. The embedded Abelian fields-as one would guess from electro- 
dynamics-consists of a magnetic and an electric field perpendicular to the plane. 
After exploiting the field equations the fields have to be constant. There are two types 
of non-Abelian configurations: 

type I 

A ,  = g , ( z ,  t )  A , = A , = O  A,  = g2(z, t )  

type I1 

A, = Q(z ,  t ) T 3  A , = R ( z ,  t ) T ' - S ( z ,  t ) T 2  

A, = S ( z ,  t ) T ' +  R(z ,  t ) T 2  A,  = P( z, t )  T 3 .  

One of the functions Q or P can still be gauged to zero by means of the remaining 
gauge freedom. As we see in table 2, solutions of the source-free equations can be 
obtained from (6.2) only. Further details on these solutions can be found in another 
paper (Basler and Hadicke 1984b). 

For the group { L 2 +  Kl,  L,  - K2, L3} there is a non-Abelian type-I1 configuration, 
so we could guess that non-Abelian solutions of the source-free field equations exist. 
Unfortunately, since the resulting field equations for this symmetry are rather compli- 
cated, neither could we construct an explicit solution, or exclude its existence. 

{Ll ,  L2, L3} is the rotational group which has been studied extensively in the past 
(Witten 1977, Gu 1981, and others). For comparison with the group { K l ,  K 2 ,  L3},  
which looks similar to the rotational group, we quote the results: 

coordinates 

a = Q = tan-' x / y  

c = r = ( x 2 +  y 2 +  z2)II2 

b = 6 =tan-' z / ( x 2 +  y2)- '12 

e = t = t .  

Abelian configuration 

T3 
cos Q sin 6 

r cos 6 
A,  = g (  r, t )  T3 A , = - C  

T3  A,  = 0.  
sin Q sin 8 

r cos 6 
A, = C 

(6.3) 

Non-Abelian type-I configuration 

Ar = g l ( r ,  t )  A,=AS=O A,  = g2(r, t ) .  (6.4) 
Non-Abelian type-I1 configuration 

Ar=O 

A ~ = = R T ~ - S T '  A,  = PT3 (6.5) 
P = P( r, t )  

A ,  = - ( l /g)  sin 6T3+cos .9(RT'-ST2) 

R = R(r,  t )  S = S ( r ,  t ) .  

To recover the Dirac string for 6 = 7r/2 explicitly, we have converted to Cartesian 
components of the potentials for the Abelian configuration. 
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We want to compare this with the configurations for { K l ,  K2,  L3}.  Here the coordin- 
ates chosen are 

c = s = ( x 2 + y 2 -  t 2 ) 1 / 2  e = z = z .  

We get the following Abelian configuration 

T 3  
cos I(, sinh x 

s cosh x A,  = g(s, t )  T 3  A , = - C  

T3  A,  = 0. 
sin CC, sinh x 
s cosh x A, = C 

At first glance, this looks similar to (6.3), but in (6.6) the string corresponding to 
cos 6 = 0 is missing; instead we recover a singularity on the hypersurface x2 + y 2  - t 2  = 0. 
The non-Abelian type-I configuration reads here 

A,  = S l ( S ,  t >  A ,=A,=O A,  = g,(s, f). (6.7) 

As in the case of the rotational group this leads to non-Abelian solutions of the 
source-free equations only for external sources. However it is well known that non- 
Abelian source-free solutions can be gained for the rotational group from the type-I1 
configuration (Wu and Yang 1969 and others) which are even static additionally. Thus, 
it is somewhat surprising, that type-I1 configurations for the group { K1, K2,  L3}  do not 
exist at all. 

7. Multiply transitive groups G, 

The multiply transitive G4 selected here come out by adding a fourth commuting 
Killing vector to one of the multiply transitive G3.  The general results are given in 
table 3.  

Table 3. Selected Yang-Mills configurations and solutions of the source-free Yang-Mills 
equations invariant under a multiply transitive G,. 

Abelian non- Abelian 

Group Orbits Conf. Solutions Conf. Solutions 

P I ,  P29 Po - P3, L2 + Ki N3 3 3 Type I - 

Type I1 3 
p , ,  p2, Po, L,  T3 3 3 Type I - 

Type I 1  3 
P 0 - P 3 , L 2 + K ~ , L ~ - K 2 , L s  N3 3 3 Type I - 

Type I1 - 
Po, L , ,  L,, L3 T3 3 3 Type I - 

Type I1 3 
P39 K , ,  K2, L3 S3-N3-T3 3 3 Type I - 

- PI, p2, 5 ,  L3 s3 3 3 Type 1 
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The case of spherical symmetry and statics has been studied extensively. Besides the 
embedded Abelian (Coulomb) solution one can get solutions of the source-free field 
equations only from the type-I1 configurations. This leads to the Wu-Yang equations 
(Wu and Yang 1968, for a recent investigation see Hadicke and Pohle 1983). It is not 
surprising that the similar group { K l ,  K 2 ,  L3, P,} which does not lead to a type-I1 
configuration does not allow for a non-Abelian solution at all. 

The two groups { P I ,  P2, P3, L3}  and { P I ,  P2, Po, L,} describe a plane, which has an 
additional symmetry: in the first case the solution has to be independent of the distance 
to the plane, in the second case it has to be static additionally. In this last case, the 
type-I1 configuration leads to interesting non-Abelian solutions of the source-free 
equations, for instance to the one 

Further solutions, implying elliptic functions, are given elsewhere (Basler and 
Hadicke 1984b). 

Remarkably, the group {Po, P3, L2+ K , ,  L1 - K Z ,  L3},  which allows for a type-I1 
configuration, does not lead to non-Abelian source-free solutions. 

8. Higher subgroups 

Out of the subgroups G, we selected only the one 

{P i ,  Pz, Po-P,, L2+Ki ,  L I - K z )  
which is the symmetry group of the plane waves of electrodynamics. The result is that 
not only non-Abelian source-free solutions of the Yang-Mills equations, but non- 
Abelian configurations in general are excluded for this symmetry. Thus we only have 
the embedding of the plane waves of electrodynamics, which is Abelian of course. 
Further details have been published elsewhere (Basler and Hadicke 1984a). 

There are ten subgroups G6 of the PoincarC group and all of them were included. 
All these G, act on the whole Minkowski space, so they are multiply transitive. The 
following five groups G, allow for Abelian configurations and source-free solutions: 

{P l ,  P2r P3r Po, L2+ K1, L1- K2) 

{PI,  p2, p3, Po, L3, K31 

{PI,  p2, po -p , ,  L2+Kl,  LI--K*,  K31 

p 2 ,  L 2 + K l ,  L l - K k ,  L 3 i a ( P 0 + P 3 ) )  

{ P I ,  P2, PO- P3, L2+ K 1 ,  L1 - K 2 ,  L, cos 4 - K 3  sin 4). 

On the other hand a non-Abelian configuration with a symmetry group G, does exist 
only for the one group 

{Ply p2, p3, Po, L3, K3). 
The following configuration belongs to this group: 

A, = 0 A, = -2ST’ - 2RT2  A, = 2RT’ - 2ST2 A, = 0 
(8.1) 

S = constant R =constant. 
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Because the configuration (8.1) produces an external current we find that non-Abelian 
source-free solutions with a symmetry group G, are generally excluded. 

For groups G, r > 6 there exist neither Abelian nor non-Abelian configurations. 
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